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Summary. In tetrahedral mesh generation, the constraints imposed by adaptive
element size, good tetrahedral quality (shape measured by some local metric), and
material boundaries are often in conflict. Attempts to satisfy these conditions simul-
taneously frustrate many conventional approaches. We propose a new strategy for
boundary conforming meshing that decouples the problem of building tetrahedra
of proper size and shape from the problem of conforming to geometric boundaries.
The proposed strategy is to first build a background mesh with the appropriate
tetrahedral properties, and then to use a stenciling method to divide or cleave these
elements to get a set of conforming tetrahedra, while strictly limiting the impacts
cleaving has on element shape. Our contributions includes a new method for build-
ing graded, unstructured meshes and a generalization of the isosurface stuffing and
lattice cleaving algorithms to unstructured background meshes.

1 Introduction

The generation of meshes that conform to several constraints, such as anisotropy
and boundary conformation, is still a challenging problem requiring great
computational effort. Many of these constraints are often in conflict with one
another, preventing successful automatic mesh generation. We take the ap-
proach of explicitly decoupling the problem of conforming to boundaries from
all other aspects of meshing. In the absence of the need to conform, other
aspects of meshing become much easier to achieve.

Our approach begins by building a nonconforming tetrahedral background
mesh. The elements of this mesh are created with the desired properties in
terms of size and shape, but with no regard for adhering to boundaries. Next,
we apply a single cleaving step to conform the mesh to material boundaries
without greatly disturbing the characteristics of elements in the initial mesh.
Near where we conform, we do expect some degradation of these properties
to occur; however, we minimize its effects through a carefully designed set of
operations.
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Our proposed method is a generalization of those reported by the well
known isosurface stuffing [3] and lattice cleaving algorithms [2]. Both algo-
rithms show exactly the same behavior, albeit for a more limited class of
boundaries (in the case of isosurface stuffing) and input background meshes
(both algorithms require body-centered cubic (BCC) lattice inputs). Both al-
gorithms also only target element quality, as measured by bounds on the dihe-
dral angles, whereas, in this work, we also focus on element size and adaptivity
(in terms of edge lengths) and anisotropy (in terms of edge orientations).

This work introduces a new strategy for building boundary conforming
meshes out of nonconforming volumetric meshes. Specifically, we make the
following contributions to the literature: (1) a new meshing strategy for bound-
ary conforming tetrahedral meshes that works in the presence of nonmanifold
boundaries, (2) a method for computing sizing fields of multimaterial volu-
metric data, and (3) a variational system for distributing mesh vertices (in
the absence of boundaries) relative to these sizing fields

2 Background and Related Work

When meshing to conform to a boundary, the majority of algorithms first
try to capture the boundary constraint. Typically, such meshes are produced
by meshing boundary features in increasing dimensionality. But as dimension
increases, the collection of lower dimensional elements impose an increasingly
complex set of constraints for the next stage of meshing. By comparison,
for approaches that start with a background lattice, proving one can still
capture the boundary becomes more complex. Typically, these approaches
use a structured lattice to construct meshes which are self-similar, such as an
octree [5]. Labelle and Shewchuk used BCC lattices as background meshes
to build tetrahedral meshes that conforming to a smooth boundary while
maintaining dihedral angle bounds [3]. Bronson et al. [2] generalize the results
of Labelle and Shewchuk with their lattice cleaving approach and were also
able to generalize a proof that in the case of multimaterial boundaries, a
bound for the dihedral angles of the resulting elements exists.

We remark that an interesting conclusion, parallel to our own, in the do-
main of hexahedral meshing by advancing front (paving and plastering) is
that relaxing the boundary constraint by delaying boundary meshing leads to
improved results [7].

3 Methodology

We provide algorithms which are separately capable of handling the specific
pieces of the following pipeline (Fig.1).

Sizing Field. Mesh elements must be adaptively sized for the purpose of
geometric fidelity and PDE solution accuracy while simultaneously reducing
the number of elements needed for an accurate numerical simulation. A sizing
field for the purpose of mesh generation should posses the following properties:
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Fig. 1: Proposed meshing pipeline for conforming volumetric meshing

a) it should be small near thin features and high-curvature regions; b) it should
progressively increase for larger features and lower-curvature regions; and c)
it should satisfy Lipschitz continuity conditions.

The algorithm to compute a sizing field is borrowed from [1] and [4], and it
computes the distance transform (DT) three times. First, a DT is computed
starting from the material boundary surface. Since the DT is discontinuous at
the media axis (where the wave front collide), these points of discontinuity are
determined. The DT is computed again from the medial axis. The values of the
DT at the boundary locations indicate the feature size at the boundary. The
DT is computed again from the boundary, but this time, the initial distance
at the boundary is assumed to be the feature size and the gradient of the
DT is limited to a desired value. This gives us the sizing field over the whole
domain.

Particle Systems for Adaptive Background Meshes. In our ap-
proach to adaptive mesh generation, we first distribute particles over the
whole domain and then use delaunay tetrahedralization algorithm to construct
a background mesh. We use an electrostatic particle simulation technique to
distribute particles over the whole domain. The particles are assumed to be
negatively charged and domain is assumed to posses a static charge density
that attracts the particles to regions of interest. We construct a charge den-
sity that is a function of the sizing field in order to “attract” the particle
towards the desired regions. When a stable distribution is reached, a tetra-
hedral mesh is generated using Tetgen [6]. The electrostatic potential due to
the background charge density is computed by solving the Poisson equation,
∇2u(x) = f(x), where u is the electrostatic potential and f is the charge
density. For the electrostatic simulation, the number of particles are seeded
in the various part of the domain is proportional to the local charge density
for quick convergence.

3.1 Unstructured Cleaving

To produce surface conforming meshes from an unstructured background mesh
we adapt the lattice cleaving[2] algorithm to unstructured meshes. Lattice
cleaving, like isosurface stuffing[3], combines tetrahedral stenciling with a set
of simple mesh modification rules to guarantee element quality.

Adapting these algorithms to unstructured meshes poses two main chal-
lenges. First, some form of parity rule is required to ensure neighboring tetra-
hedra share consistent face boundaries. Second, the α-parameter vector be-
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comes as long as the number of edges in the mesh, with optimal values unique
to each mesh.

Stencil Consistency

To ensure stencil consistency for unstructured meshes, we modify the strategy
of stencil generalization used in the lattice cleaving algorithm. Any strategy
that generalizes all possible stencils to the symmetric 6-cut case is effectively a
parity rule. These generalizations can be achieved by placing virtual cuts along
any edge with no material interface. These cuts can be interpreted as cuts that
have already snapped to the incident vertex, collapsing the stencil elements
that helped define the would-be interface. Similar roles exist for virtual triples
and virtual quadruples.

Fig. 2: Left: Cyclic virtual cuts lead to an unsatisfiable generalization. Right: Any
ordered priority can lead to safe generalization.

We observe that as long as the direction of virtual cuts is acyclic, a con-
sistent and nondegenerate stenciling is always possible. Enforcing this acyclic
property only requires a strict total ordering on the vertices of the background
mesh. This ordering can then be used to place virtual cuts, and subsequently
determine ideal locations for virtual triples and virtual quadruples.

Alpha Selection

The quality preservation of the cleaving algorithms relies on the selection of
violation parameter vector α. Unfortunately, the complexity of determining
an optimal α is significant. Isosurface stuffing employed brute-force interval
arithmetic to determine tight bounds on optimal α-parameters. This form
of solution becomes intractible for the multimaterial case of lattice cleaving,
due to the 2 and 3-dimensional violation regions, as well as the increase in
number of stencil cases. As the length of the α-parameter vector becomes a
function of the edge count in an unstructured mesh, a systematic optimization
of these values is not an option. Thus, we aim first for a way to achieve safe
α-parameters.

Although tight bounds for the lattice cleaving algorithm are unknown, a
formal proof showed that such bounds do exist as a function of α. This proof
directly applies to unstructured meshes, since it does not rely on the specific
structure of the background lattice, merely that its element not be degenerate.
Its premise also offers a convenient way to pick safe α-parameters. For any
tetrahedron, a set of α-balls can be chosen to satisfy the non-overlapping
condition. These α-balls must not overlap along edges, and they must not
overlap along altitudes. Thus, a safe choice for any vertex can always be made
by choosing the half the length of shortest edge or altitude.
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4 Preliminary Results
Figure 3 shows a cut-away view and a surface view of two unstructured adap-
tive tetrahedral meshes. Since the background mesh adapts to feature size, the
cleaving algorithm has sufficient resolution to capture the surfaces and their
topology properly, while remaining coarse in areas where the fine resolution
is unnecessary.

Fig. 3: Left: Cut away view of two spheres kissing. Right: Surface view of two spheres
of different sizes kissing.

The particle system achieves its goals with simplicity due to the lack of
interface surfaces. The lattice cleaving algorithm generalizes to unstructured
meshes with only a few changes. Our α-parameter selection provides a starting
point for more sophicated methods. Together, this early work suggests that
the union of traditional and combinatoric meshing techniques promises to
provide a fertile ground for new developments in high quality conforming
mesh generation for unstructured meshes.
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